
Int. J. Advanced Networking and Applications
Volume: 04 Issue: 04 Pages:1674-1679 (2013) ISSN : 0975-0290

1674

Deriving Differential Unit Test Cases from
System Test Cases

Ramesh V
Asst. Prof. Department of Computer Science and Engineering, Kalasalingam Institute of Technology, Tamilnadu

Email: ramesh_8607@yahoo.co.in
Ananthakumar R

Asst. Prof. Department of Computer Science and Engineering, Kalasalingam Institute of Technology, Tamilnadu
Email: r.ananth05@gmail.com

KannuDurai S
Asst. Prof. Department of Computer Science and Engineering, Kalasalingam Institute of Technology, Tamilnadu

Email: kannuduraivlp@gmail.com

---ABSTRACT--
Differential testing works by creating test suites for both the original system and the modified system and contrasting
both versions of the system with these two suites. Differential testing is made possible by recent advances in
automated unit test generation. The differential unit testing is one where developers would like to generate tests that
exhibit the behavioral differences between the two versions, if any differences exist. Differential unit tests (DUT) are a
combination of unit and system tests. DUTs retain some of the advantages of unit tests, can be automatically and
inexpensively generated, and have the potential for revealing faults related to intricate system executions. Some
examples of differential unit testing include regression testing, N-version testing, and mutation testing. Differential
testing discovered 21%, 34%, and 21% more behavior changes using regression testing techniques than using
regression testing alone.

Keywords - Differential Unit Testing, System Testing, Test Cases, Unit Testing.
--

Date of Submission: January 10, 2013 Date of Acceptance: February 13, 2013
--

I. INTRODUCTION

We focus on differential unit testing, where differential
testing is applied on a program unit. System tests are
usually developed based on documents that describe the
system�s functionality from the user�s perspective, for
example, requirement documents and user�s manuals.
This makes system tests appropriate for determining the
readiness of a system for release, or to grant or refuse
acceptance by customers. System tests can be developed
without an intimate knowledge of the system internals,
which reduces the level of expertise required by test
developers and which makes tests less-sensitive to
implementation level changes that are behavior preserving.
System tests may expose faults that unit tests do not, for
example, those that span multiple units or those involve
very complex usage of units. Finally, since they involve
executing the entire system no test harnesses need be
constructed. Behavior of an invocation depends on the
method�s arguments and the state of the receiver at the
beginning of the invocation. Behavior of an invocation
can often be observed through the method�s return and the
state of the receiver at the end of the invocation.

The preceding characterization of unit and system tests,
although not comprehensive, illustrates that system and
unit tests have complementary strengths and that they
offer a rich set of tradeoffs. In this paper, we present a
general framework for deriving of what we call
differential unit tests (DUT) which aim at exploiting those
tradeoffs. We termed them differential because their
primary function is detecting differences between multiple
versions of a unit�s implementation. DUTs are meant to be
focused and efficient, like traditional unit tests, yet they
are automatically generated along with a custom test-
harness, making them inexpensive to develop and easy to
evolve. In addition, since they indirectly capture the
notion of correctness encoded in the system tests from
which they are carved, they have the potential for
revealing faults related to complex patterns of unit usage.

II LITERATURE SURVEY
A. Unit Testing
This is the most important of all the testing levels. This is
the first and the most important level of testing.
a) Unit Testing Tasks and Steps:
Step 1: Create a Test Plan
Step 2: Create Test Cases and Test Data

Int. J. Advanced Networking and Applications
Volume: 04 Issue: 04 Pages:1674-1679 (2013) ISSN : 0975-0290

1675

Step 3: If applicable create scripts to run test cases
Step 4: Once the code is ready execute the test cases
Step 5: Fix the bugs if any and re test the code

Step 6: Repeat the test cycle until the �unit� is free of all
bugs

TABLE 1

Unit Testing Test Case Sample

Test
Case ID Test Case Description Input

Data Expected Result Actual Result Pass
/Fail Remarks

Additionally the following information may also be
captured:
a) Unit Name and Version Being tested
b) Tested By
c) Date
d) Test Iteration (One or more iterations of unit testing

may be performed)

b) Charles' Six Rules of Unit Testing

1. Write the test first
2. Never write a test that succeeds the first time
3. Start with the null case, or something that doesn't

work
4. Don't be afraid of doing something trivial to make the

test work
5. Loose coupling and testability go hand in hand
6. Use mock objects

c) Steps to Effective Unit Testing:

1. Documentation: Early on document all the Test Cases
needed to test your code. A lot of times this task is not
given due importance. Document the Test Cases, actual
Results when executing the Test Cases, Response Time of
the code for each test case. There are several important
advantages if the test cases and the actual execution of
test cases are well documented.
a. Documenting Test Cases prevents oversight.
b. Documentation clearly indicates the quality of test

cases
c. If the code needs to be retested we can be sure that we

did not miss anything
d. It provides a level of transparency of what was really

tested during unit testing. This is one of the most
important aspects.

e. It helps in knowledge transfer in case of employee
attrition

f. Sometimes Unit Test Cases can be used to develop test
cases for other levels of testing

2. What should be tested when Unit Testing: A lot
depends on the type of program or unit that is being
created. It could be a screen or a component or a web
service. Broadly the following aspects should be
considered:

a. For a UI screen include test cases to verify all the

screen elements that need to appear on the screens
b. For a UI screen include Test cases to verify the

spelling/font/size of all the �labels� or text that appears
on the screen

c. Create Test Cases such that every line of code in the
unit is tested at least once in a test cycle

d. Create Test Cases such that every condition in case of
�conditional statements� is tested once

e. Create Test Cases to test the minimum/maximum range
of data that can be entered. For example what is the
maximum �amount� that can be entered or the max
length of string that can be entered or passed in as a
parameter?

f. Create Test Cases to verify how various errors are
handled

g. Create Test Cases to verify if all the validations are
being performed

3. Automate where Necessary: Time pressures/Pressure
to get the job done may result in developers cutting
corners in unit testing. Sometimes it helps to write scripts,
which automate a part of unit testing. This may help
ensure that the necessary tests were done and may result
in saving time required to perform the tests.

Int. J. Advanced Networking and Applications
Volume: 04 Issue: 04 Pages:1674-1679 (2013) ISSN : 0975-0290

1676

TABLE 2
Sample data of the Tested using UNIT TESTING

Test
No.

Test ID

Initial State

Test

Expected Result

1 U1-S1-C1 Valid entry in all
fields.

Erase the last name and
click Add.

Error 101: Last name is a
required field.

2 U1-S2-C1 Valid entry in all
fields.

Enter a last name with 35
characters and no spaces.
Click Add.

Name is accepted, record is
added and a clear input
screen is displayed.

3 U1-S2-C2 Valid entry in all
fields.

Enter a last name of 36
characters and no spaces.

Error 103: Last name may
not exceed 35 characters.

4 U1-S3-C1 Valid entry in all
fields.

Enter a last name in the
form: X�Xxxxx

Name is accepted, record is
added and a clear input
screen is displayed.

5 U1-S3-C2 Valid entry in all
fields.

Enter a last name in the
form: �Xxxxx

Error 107: First character
must be a letter.

B. System Testing is a crucial step in Quality
Management Process.
1. In the Software Development Life cycle System

Testing is the first level where. The System is tested
as a whole.

2. The System is tested to verify if it meets the
functional and technical .requirements

3. The application/System is tested in an environment
that closely resembles the .production environment
where the application will be finally deployed

4. The System Testing enables us to test, verify and
validate both the Business requirements as well as the
Application Architecture

a) Steps to perform System Testing:
.Step 1: Create a System Test Plan
.Step 2: Create Test Cases

.Step 3: Carefully Build Data used as Input for System
Testing

.Step 3a: If applicable create scripts to

..................- Build environment and

..................- to automate Execution of test cases
Step 4: Execute the test cases
Step 5: Fix the bugs if any and re test the code
Step 6: Repeat the test cycle as necessary

b) The format of the System Test Cases

• Test Case ID
• Test Case Description:

o What to Test?
o How to Test?

• Input Data
• Expected Result
• Actual Result

TABLE 3
Sample System Testing Test Case Format:

Test Case
ID

What To
Test?

How to
Test? Input Data Expected Result Actual Result Pass

/Fail

.

.

.

.

.

.

.

Int. J. Advanced Networking and Applications
Volume: 04 Issue: 04 Pages:1674-1679 (2013) ISSN : 0975-0290

1677

Additionally the following information may also be
captured:
........a) Test Suite Name
........b) Tested By
........c) Date
........d) Test Iteration (The Test Cases may be executed
one or more times)

c) Various factors that affect success of System
Testing:
1. Test Coverage: System Testing will be effective only
to the extent of the coverage of Test Cases. What is Test
coverage? Adequate Test coverage implies the scenarios
covered by the test cases are sufficient. The Test cases
should �cover� all scenarios, use cases, Business
Requirements, Technical Requirements, and Performance
Requirements. The test cases should enable us to verify

and validate that the system/application meets the project
goals and specifications.

2. Defect Tracking: The defects found during the process
of testing should be tracked. Subsequent iterations of test
cases verify if the defects have been fixed.

3. Test Execution: The Test cases should be executed in
the manner specified. Failure to do so results in improper
Test Results.

4. Build Process Automation: A Lot of errors occur due
to an improper build. �Build� is a compilation of the
various components that make the application deployed in
the appropriate environment. The Test results will not be
accurate if the application is not �built� correctly or if the
environment is not set up as specified. Automating this
process may help reduce manual errors.

TABLE 4
Test cases have been selected for both valid and invalid inputs.

SEQ
NO.

TEST
CASE
[File]

CONDITION BEING
CHECKED

EXPECTED OUTPUT

1 [F1.1] Incorrect course no. format Print course no. and error message
2 [F1.7] More than allowed (30) courses Error message and skip to lecture times

3 [F1.4] Course list empty to lecture times Error message and skip

4 [F1.5] Spelling of header Error message and stop
5 [F1.1] Lecture time format Print time, error message, and continue

6 [F1.2] More than allowed no. of lecture times (15) Error message, discard extra and skip to room
no.s

III COMPARING UNIT & SYSTEM TESTING

In all reality we don�t take either/or approach to
unit and system testing. They do compliment each other
nicely - unit tests in the projects give a bit more
confidence in the overally system stability - but not to rely
on unit testing to ensure stability.

But unit testing should not be looked at as just
another form of assurance of the overall system is
working as-needed. Unit testing will definitly provide the
extra assurance that the system works, but it is really
designed to ensure that, should the system need to be
changed in the future, it can be changed in predictable
ways without causing unexpected side effects. Unit
testing is a check against the programmers themselves
inadvertently wreaking havoc when trying to modify
system behavior.

If a coder writes a function (method) how does s/he know

that it works and the work is finished? S/he needs to unit
test in isolation from the rest of the system (everything
else stubbed out with stubs returning controlled values) so
that it performs correctly for the different types of inputs,
that is just sound coding practice - define a test, then code
till the test works, try to think of more tests and reiterate.

The "system tests" (or functional tests or acceptance tests)
are not usually performed by the coder but by the
requirements people or their helpers. If these tests are not
passed, you haven't fulfilled the contract.

If you have to choose, do just the "system tests", but be
prepared for high costs in finding the bugs and also high
costs for the system testing as such because you need to
make that testing much more detailed. A system test is not
going to let you test the behavior of code under insane
conditions, or simulate non-deterministic things in a
deterministic way.

Int. J. Advanced Networking and Applicatio
Volume: 04 Issue: 04 Pages:1674-1679 (

IV DIFFERENTIAL UNIT TESTING

At any point during the execution of a
program state, S, can be defined, conceptu
the values in memory. As needed, we will d
for accessing specific portions of a state, fo
parameters in the current active frame of the
A program execution can be formalized
sequence of program states or as a sequen
actions that cause state changes. A sequen
states is written as σ = s0 , s1 , . . .
where si ∈ S and s0 is the initial program
A state si+1 is reached from si by executing
A sequence of program actions is written
denote the final state of an action sequence s

Fig. 1. Deriving process of Testi

Given a system test case stx , carving a

ctxm for target unit m during the exe
consists of capturing spre , the p
immediately before the first instruction of
of method m, and spost , the p
immediately after the final instruction of
of m has executed. The captured pair o
spost), defines a differential unit test
method, ctxm . States in this pair can b

Test Case
ID

Test Case
Description

What T
Test?

.

- -

ons
2013) ISSN : 0975-0290

a program the
ually, as all of
define notation
or example, the
e call stack.
d either as a

nce of program
nce of program

state.
g a single action.
n as σ¯. We
s(σ¯).

ing

a unit test case
cution of stx

program state
f an activation
program state
the activation

of states (spre ,
t case for a
be defined by

capturing the appropriate states
cumulative effects of a se- quen
by capturing s(σ̄) at the appropr
testing approach is said to be s
pairs (spre , spost) and action-b
(σ̄pre , spost) where spre = s(σ̄pr

Fig. 2. Architecture of d

Two set of scripts, repre
rectangles in Figure 4, are utilized
and differencing mechanisms. On
is generated, test case filtering
remove redundant test cases bas
projections available through B
scripts compare two spost acc
differencing function to determin
from m to m0 generate a behavior
differencing functions on return v
on full program state (the default)
facilitate experimentation with dif
tools currently store the full s
implement options to store only
potential to significantly reduce th
and differencing.

TABLE 3
Sample DUT Test Case Format:

To How to Test? Input Data Expected
Result

.

.

.

1678

s in σ, or through the
nce of program actions,
riate points in σ̄. A CR
state-based if it records
based if it records pairs
re).

derivative tool

esented with double-side
d to provide the filtering
nce a test suite of DUTs
g can be performed to
sed on the same set of

Bounding Analysis. Dif
cording to a specified
ne whether the changes
ral difference. Currently,

values, on instance fields,
) are fully automated. To
fferent Dif functions our
spost , but we plan to
dif(spost) which has the

he cost of carving, replay

Actual
Result

Pass
/Fail

.

.

Int. J. Advanced Networking and Applications
Volume: 04 Issue: 04 Pages:1674-1679 (2013) ISSN : 0975-0290

1679

V .CONCLUSION
The framework incorporates sophisticated projection and
differencing strategies that can be instantiated in various
ways to accommodate distinct trade-offs. We have
implemented a state-based instance of the framework that
mitigates testing costs through two types of reachability
based projections, and that can adjust the DUTs
sensitivity through two differencing functions. Our
evaluation of this implementation has revealed that DUTs
can be automatically generated from system tests, reduce
average test suite execution time to a tenth of our best
system selection technique, and still retain most of the
fault detection power of system tests.
Differential testing such as regression testing, N-version
testing, and mutation testing considers two (or more)
versions of the software and seeks test inputs that exhibit
behavioral differences between these versions. To reduce
the manual effort in checking the outputs between versions
and generating inputs that expose behavioral differences,
we have proposed the DUT framework for differential
unit testing of object-oriented programs. For each public
method in the class under test, these annotations invoke the
corresponding method in the other version of the class
(with the cached method arguments) and compare the
return values and receiver-object states of the two
corresponding method executions. We can run existing
tests on the Java code instrumented by DUT to detect
behavioral differences between two versions. Moreover,
the Java code instrumented by DUT can be fed to test-
generation tools to conduct differential test generation.

REFERENCES
[1]. S. Elbaum, H. N. Chin, M. Dwyer, and J. Dokulil.

Carving differential unit test cases from system test
cases. In Proc.14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pages 253�264, 2006.

[2]. B. Korel and A. M. Al-Yami. Automated regression
test generation. In Proc. 1998 ACM SIGSOFT
International Sym- posium on Software Testing and
Analysis, pages 143�152,1998.

[3]. J. Winstead and D. Evans. Towards differential
program analysis. In Proc. ICSE 2003 Workshop on
Dynamic Analy- sis, pages 37�40, May 2003.

[4]. T. Xie. Augmenting automatically generated unit-test
suites with regression oracle checking. In Proc.
20th European Conference on Object-Oriented
Programming, pages 380�403, July 2006.

[5]. D. Saff and M. D. Ernst. An experimental evaluation
of continuous testing during development. In
Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages
76�85, 2004.

[6]. B. Weide. Modular regression testing�: Connections
to component-based software. In Workshop
onComponent-based Software Engineering, pages

82�91, May 2001.
[7]. E. J. Weyuker. On testing non-testable programs. The

Computer Journal, 15(4):465�470, 1982.
[8]. T. Xie and D. Notkin. Tool-assisted unit-test

generation and selection based on operational
abstractions. Automated Software Engineering
Journal, 2006.

[9]. XStream. Xstream - 1.1.2.
http://xstream.codehaus.org, Aug. 2005.

[10]. A. Orso and B. Kennedy. Improving dynamic
analysis through partial replay of user�s executions.
Dagstuhl Seminar: Understanding Program Dynamics,
Dec. 2003.

[11]. Orso and B. Kennedy. Selective capture and replay of
program executions. In Workshop on Dynamic
Analysis, May 2005.

